Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.685
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38522903

RESUMO

BACKGROUND: Perfluorooctanoic acid (PFOA) is one of the major per- and polyfluoroalkyl substances. The role of ATP-binding cassette (ABC) transporters in PFOA toxicokinetics is unknown. METHODS: In this study, two ABC transporters, ABCB1 and ABCB4, were examined in mice with single intravenous PFOA administration (3.13 µmol/kg). To identify candidate renal PFOA transporters, we used a microarray approach to evaluate changes in gene expression of various kidney transporters in Abcb4 null mice. RESULTS: Biliary PFOA concentrations were lower in Abcb4 null mice (mean ± standard deviation: 0.25 ± 0.12 µg/mL) than in wild-type mice (0.87 ± 0.02 µg/mL). Immunohistochemically, ABCB4 expression was confirmed at the apical region of hepatocytes. However, renal clearance of PFOA was higher in Abcb4 null mice than in wild-type mice. Among 642 solute carrier and ABC transporters, 5 transporters showed significant differences in expression between wild-type and Abcb4 null mice. These candidates included two major xenobiotic transporters, multidrug resistance 1 (Abcb1) and organic anion transporter 3 (Slc22a8). Abcb1 mRNA levels were higher in Abcb4 null mice than in wild-type mice in kidney. In Abcb4 null mice, Abcb1b expression was enhanced in proximal tubules immunohistochemically, while that of Slc22a8 was not. Finally, in Abcb1a/b null mice, there was a significant decrease in the renal clearance of PFOA (0.69 ± 0.21 vs 1.1 mL ± 0.37/72 h in wild-type mice). A homology search of ABCB1 showed that several amino acids are mutated in humans compared with those in rodents and monkeys. CONCLUSIONS: These findings suggest that, in the mouse, Abcb4 and Abcb1 are excretory transporters of PFOA into bile and urine, respectively.


Assuntos
Caprilatos , Fluorocarbonos , Eliminação Hepatobiliar , Humanos , Camundongos , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Rim , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
2.
Chin Med Sci J ; 39(1): 9-18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426412

RESUMO

Objective Aberrant expression of ATP binding cassette subfamily B member 1 (ABCB1) plays a key role in several cancers. However, influence of G protein coupled receptor family C group 5 type A (GPRC5A)-regulated ABCB1 expression on lung adenocarcinoma proliferation remains unclear. Therefore, this study investigated the effect of GPRC5A regulated ABCB1 expression on the proliferation of lung adenocarcinoma. Methods ABCB1 expressions in lung adenocarcinoma cell lines, human lung adenocarcinoma tissues, and tracheal epithelial cells and lung tissues of GPRC5A knockout mice and wild-type mice were analyzed with RT-PCR, Western blot, or immunohistochemical analysis. Cell counting kit-8 assay was performed to analyze the sensitivity of tracheal epithelial cells from GPRC5A knockout mice to chemotherapeutic agents. Subcutaneous tumor formation assay was performed to confirm whether down-regulation of ABCB1 could inhibit the proliferation of lung adenocarcinoma in vivo. To verify the potential regulatory relationship between GPRC5A and ABCB1, immunofluorescence and immunoprecipitation assays were performed. Results ABCB1 expression was up-regulated in lung adenocarcinoma cell lines and human lung adenocarcinoma tissues. ABCB1 expression in the tracheal epithelial cells and lung tissues of GPRC5Adeficient mice was higher than that in the wild type mice. Tracheal epithelial cells of GPRC5A knockout mice were much more sensitive to tariquidar and doxorubicin than those of GPRC5A wild type mice. Accordingly, 28 days after injection of the transplanted cells, the volume and weight of lung tumor in ABCB1knockout cell-transplanted GPRC5A-/-C57BL/6 mice were significantly smaller than those in wild type cell-transplanted mice (P= 0.0043, P= 0.0060). Furthermore, immunofluorescence and immunoprecipitation assays showed that GPRC5A regulated ABCB1 expression by direct binding.Conclusion GPRC5A reduces lung adenocarcinoma proliferation via inhibiting ABCB1 expression. The pathway by which GPRC5A regulates ABCB1 expression needs to be investigated.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Adenocarcinoma/genética , Adenocarcinoma/patologia , Camundongos Endogâmicos C57BL , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Knockout , Proliferação de Células , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
3.
Drug Metab Pers Ther ; 39(1): 27-34, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507296

RESUMO

OBJECTIVES: Carbamazepine (CBZ) is one of the oldest, yet first line drugs for treating epilepsy. However, there is a large inter-individual difference in requirement of maintenance dose and one third of persons treated with antiepileptic drugs (AEDs) exhibit drug resistance to therapy. One of the proposed mechanisms for the drug resistance was increased expression of efflux transporter P-glycoprotein. The pharmacogenetic studies of drug transporters (ABCB1) done in combination therapies of AEDs were inconclusive. Hence, we have attempted to study the impact of ABCB1 3435C>T genetic polymorphism and CBZ monotherapy in persons with epilepsy (PWE) from South India, which is a genetically distinct population. With this background, this study was aimed to determine the dose of CBZ in ABCB1 3435C>T genotypes and to determine the distribution of ABCB1 3435C>T genotypes (which codes P-glycoprotein) between responders and non-responders to CBZ therapy. METHODS: A cross sectional study was conducted in 200 persons with epilepsy, who were categorised as responders and non-responders according to ILAE (international league against epilepsy) criteria. Eligible participants were enrolled from the epilepsy clinic of the neurology department and five ml of blood was collected. DNA extraction and genotyping were done by phenol-chloroform method and real time polymerase chain reaction (RT-PCR), respectively. RESULTS: The mean maintenance dose of carbamazepine was statistically significant among different genotypes (p<0.05) of ABCB1 3435C>T (526 vs. 637 mg/day in CC vs. TT genotype). There was no significant association between ABCB1 3435C>T polymorphism (p=0.827) and CBZ resistance in PWE. Duration of disease and age of onset were found to be significant in predicting the response to CBZ therapy. CONCLUSIONS: We report that ABCB1 3435C>T polymorphism is significantly associated with an increase in dose requirement of CBZ in persons with epilepsy from South India.


Assuntos
Epilepsia , Polimorfismo de Nucleotídeo Único , Humanos , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Benzodiazepinas/administração & dosagem , Benzodiazepinas/uso terapêutico , Carbamazepina/administração & dosagem , Carbamazepina/uso terapêutico , Estudos Transversais , Epilepsia/tratamento farmacológico , Epilepsia/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Testes Farmacogenômicos
4.
Infect Dis (Lond) ; 56(4): 308-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315168

RESUMO

BACKGROUND: Rifampicin, a key drug against tuberculosis (TB), displays wide between-patient pharmacokinetics variability and concentration-dependent antimicrobial effect. We investigated variability in plasma rifampicin concentrations and the role of SLCO1B1, ABCB1, arylacetamide deacetylase (AADAC) and carboxylesterase 2 (CES-2) genotypes in Ethiopian patients with TB. METHODS: We enrolled adult patients with newly diagnosed TB (n = 119) who had received 2 weeks of rifampicin-based anti-TB therapy. Venous blood samples were obtained at three time points post-dose. Genotypes for SLCO1B1 (c.388A > G, c.521T > C), ABCB1 (c.3435C > T, c.4036A > G), AADACc.841G > A and CES-2 (c.269-965A > G) were determined. Rifampicin plasma concentration was quantified using LC-MS/MS. Predictors of rifampicin Cmax and AUC0-7 h were analysed. RESULTS: The median rifampicin Cmax and AUC0-7 were 6.76 µg/mL (IQR 5.37-8.48) and 17.05 µg·h/mL (IQR 13.87-22.26), respectively. Only 30.3% of patients achieved the therapeutic efficacy threshold (Cmax>8 µg/mL). The allele frequency for SLCO1B1*1B (c.388A > G), SLCO1B1*5 (c.521T > C), ABCB1 c.3435C > T, ABCB1c.4036A > G, AADAC c.841G > A and CES-2 c.269-965A > G were 2.2%, 20.2%, 24.4%, 14.6%, 86.1% and 30.6%, respectively. Sex, rifampicin dose and ABCB1c.4036A > G, genotypes were significant predictors of rifampicin Cmax and AUC0-7. AADACc.841G > A genotypes were significant predictors of rifampicin Cmax. There was no significant influence of SLCO1B1 (c.388A > G, c.521T > C), ABCB1c.3435C > T and CES-2 c.269-965A > G on rifampicin plasma exposure variability. CONCLUSIONS: Subtherapeutic rifampicin plasma concentrations occurred in two-thirds of Ethiopian TB patients. Rifampicin exposure varied with sex, dose and genotypes. AADACc.841G/G and ABCB1c.4036A/A genotypes and male patients are at higher risk of lower rifampicin plasma exposure. The impact on TB treatment outcomes and whether high-dose rifampicin is required to improve therapeutic efficacy requires further investigation.


Assuntos
Rifampina , Tuberculose , Adulto , Humanos , Masculino , Rifampina/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Genótipo , Tuberculose/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carboxilesterase/genética
5.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367548

RESUMO

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Sensibilidade Colateral a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Antineoplásicos/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia
6.
Elife ; 122024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38259172

RESUMO

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Translocação Genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Mutação
8.
Pharmacogenomics ; 25(1): 29-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38189154

RESUMO

Aim: Successful treatment with tacrolimus to prevent graft versus host disease (GVHD) and minimize tacrolimus-related toxicities among allogeneic hematopoietic cell transplantation (alloHCT) recipients is contingent upon quickly achieving and maintaining concentrations within a narrow therapeutic range. The primary objective was to investigate associations between CYP3A4, CYP3A5 or ABCB1 genotype and the proportion of patients that attained an initial tacrolimus goal concentration following initiation of intravenous (iv.) and conversion to oral administration. Materials & methods: We retrospectively evaluated 86 patients who underwent HLA-matched (8/8) related donor alloHCT and were prescribed a tacrolimus-based regimen for GVHD prophylaxis. Results & conclusion: The findings of the present study suggests that CYP3A5 genotype may impact attainment of initial therapeutic tacrolimus concentrations with oral administration in alloHCT recipients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Tacrolimo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Imunossupressores , Estudos Retrospectivos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Resultado do Tratamento , Genótipo , Transplante de Células-Tronco Hematopoéticas/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
9.
J Exp Clin Cancer Res ; 43(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163893

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS: Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS: Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION: Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
10.
Sci Rep ; 14(1): 2577, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297024

RESUMO

Affected by differences in the pharmacokinetics (PK) of lenalidomide, the toxicity of lenalidomide varies among different patients, with serious toxicity leading to dose reduction or discontinuation. The differences in the PK of lenalidomide may be related to factors such as patients' physiological characteristics, pathological characteristics and gene polymorphisms etc., which may also affect its toxicity. The aim of this study is to establish a population pharmacokinetic (PPK) model of lenalidomide and explore factors associated with the adverse events (AEs) of lenalidomide from a PK perspective. Blood samples were collected by opportunistic blood collection. Drug concentrations were determined by using HPLC/MS and genotype of ABCB1 3435 C > T (rs1045642), ABCB1 1236 A > G (rs1128503) and ABCB1 2677 A > C/T (rs2032582) was tested by the first-generation DNA sequencing technology. NONMEM software and SPSS 26.0 software were used respectively to establish PPK model of lenalidomide and explore the correlation between PK parameters and the incidence of serious AEs of lenalidomide. 51 patients were enrolled in the PPK study, and one-compartment model with first-order absorption and elimination agreed well with the observed data. The significant covariate affecting lenalidomide apparent volume of distribution (V/F) were the gene polymorphism of ABCB1 3435 C > T and diet. Safety studies could be conducted in 39 patients. The V/F value in patients suffering from serious AEs was significantly higher than that in others ( median = 67.04 L vs 37.17 L, P = 0.033). According to the covariates screened, the incidence of serious AEs was higher in patients with genotype CT or TT at ABCB1 3435 C > T locus than that in patients with genotype CC (P = 0.039). Additionally, V/F value was the highest in patients carrying genotype TT with postprandial medication, in whom the incidence of serious AEs was higher than others (P = 0.037). In conclusion, the genotype of ABCB1 3435 C > T locus and diet had pharmacokinetically relevant impact on lenalidomide, which may also be related to the incidence of serious AEs. Patients with gene variants of CT or TT at ABCB1 3435 C > T locus may be more susceptible to serious AEs, and monitoring of adverse reactions should be particularly strengthened in patients who carried genotype TT with postprandial medication.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , População do Leste Asiático , Lenalidomida , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , China , Genótipo , Lenalidomida/efeitos adversos , Lenalidomida/farmacocinética , Polimorfismo de Nucleotídeo Único , População do Leste Asiático/genética
11.
Mol Biol Rep ; 51(1): 191, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270743

RESUMO

BACKGROUND: Epilepsy is a common neurological disease but around 30% of patients fail to respond to antiepileptic drug (AED) treatment. Genetic variation of the ATP-binding cassette subfamily B, member 1 (ABCB1) gene, a drug efflux transporter may infer treatment resistance by decreasing gastrointestinal absorption and preventing AED entry into the brain. This study examined the impact of ABCB1 genetic variants on carbamazepine responsiveness. MATERIALS AND METHODS: Genomic DNA was extracted from whole blood of 104 epileptic patients. Genotyping of 3 ABCB1 variants (c.C3435T, c.G2677T/A and c.C1236T) was undertaken using validated TaqMan allelic discrimination assays. Plasma carbamazepine levels were measured at 3 and 6 months following the initial dose using high-performance liquid chromatography (HPLC) alongside clinical outcomes evaluation. RESULTS: Nonresponse to carbamazepine (CBZ) was associated significantly with the ABCB1 variants c.C3435T, c.G2677T/A, c.C1236T and TTT, TTC haplotypes (P < 0.05). There was no significant association between variants and plasma CBZ level (P > 0.05). CONCLUSIONS: Our results showed that variant alleles of the ABCB1 gene and TTT, TTC haplotypes were significantly associated with CBZ resistance without affecting the plasma level of carbamazepine. The findings of this study may help to predict patient's response to treatment ultimately it will improve the personalized and evidence based treatment choice of patients with epilepsy.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Carbamazepina/uso terapêutico , Anticonvulsivantes/uso terapêutico , Alelos , Encéfalo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
12.
Mol Pharm ; 21(2): 932-943, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38225758

RESUMO

P-glycoprotein (P-gp, encoded in humans by the ABCB1 gene and in rodents by the Abcb1a/b genes) is a membrane transporter that can restrict the intestinal absorption and tissue distribution of many drugs and may also contribute to renal and hepatobiliary drug excretion. The aim of this study was to compare the performance and sensitivity of currently available radiolabeled P-gp substrates for positron emission tomography (PET) with the single-photon emission computed tomography (SPECT) radiotracer [99mTc]Tc-sestamibi for measuring the P-gp function in the kidneys and liver. Wild-type, heterozygous (Abcb1a/b(+/-)), and homozygous (Abcb1a/b(-/-)) Abcb1a/b knockout mice were used as models of different P-gp abundance in excretory organs. Animals underwent either dynamic PET scans after intravenous injection of [11C]N-desmethyl-loperamide, (R)-[11C]verapamil, or [11C]metoclopramide or consecutive static SPECT scans after intravenous injection of [99mTc]Tc-sestamibi. P-gp in the kidneys and liver of the mouse models was analyzed with immunofluorescence labeling and Western blotting. In the kidneys, Abcb1a/b() mice had intermediate P-gp abundance compared with wild-type and Abcb1a/b(-/-) mice. Among the four tested radiotracers, renal clearance of radioactivity (CLurine,kidney) was significantly reduced (-83%) in Abcb1a/b(-/-) mice only for [99mTc]Tc-sestamibi. Biliary clearance of radioactivity (CLbile,liver) was significantly reduced in Abcb1a/b(-/-) mice for [11C]N-desmethyl-loperamide (-47%), [11C]metoclopramide (-25%), and [99mTc]Tc-sestamibi (-79%). However, in Abcb1a/b(+/-) mice, CLbile,liver was significantly reduced (-47%) only for [99mTc]Tc-sestamibi. Among the tested radiotracers, [99mTc]Tc-sestamibi performed best in measuring the P-gp function in the kidneys and liver. Owing to its widespread clinical availability, [99mTc]Tc-sestamibi represents a promising probe substrate to assess systemic P-gp-mediated drug-drug interactions and to measure renal and hepatic P-gp function under different (patho-)physiological conditions.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Metoclopramida , Humanos , Camundongos , Animais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Tomografia Computadorizada por Raios X , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Fígado/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Rim/diagnóstico por imagem , Nitrilas , Compostos de Organotecnécio , Camundongos Knockout
13.
Drug Des Devel Ther ; 18: 109-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38287944

RESUMO

Purpose: The aim of this study was to determine the effect of ABCB1 genetic polymorphism and renal function on the occurrence of ticagrelor-related dyspnea. Patients and Methods: A total of 299 patients with acute with type 1, 2, or 3 myocardial infarction (with and without ST-segment elevation), who underwent coronary angiography and PTCA with stent implantation and were treated with antiplatelet drugs (ticagrelor and aspirin), were enrolled in this prospective study. For all enrolled patient's platelet aggregation (induction with high-sensitivity adenosine diphosphate, ADP HS) testing was performed using a MULTIPLATE® analyzer. Venous blood was also collected for genotyping. Results: Patients experiencing ticagrelor-related dyspnea had lower ADP HS value (ADP HS ≤ 19.5 U; OR = 2.254; P = 0.009), higher creatinine concentration (>90 µmol/l; OR = 3.414; P = 0.019), and lower GFR value (<60 mL/min/1.73 m2; OR = 2.211; P = 0.035). ABCB1 T allele was associated with ticagrelor-related dyspnea (OR = 2.550; P = 0.04). Conclusion: Ticagrelor-related dyspnea was found to be related to low platelet aggregation, increased plasma creatinine concentration, decreased GFR, and ABCB1 T allele. Carriers of the ABCB1 T allele had a higher plasma creatinine concentration that could be associated with an inhibitory effect of ticagrelor on P-glycoprotein function.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Síndrome Coronariana Aguda , Dispneia , Ticagrelor , Humanos , Síndrome Coronariana Aguda/tratamento farmacológico , Síndrome Coronariana Aguda/genética , Difosfato de Adenosina , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Creatinina , Dispneia/induzido quimicamente , Rim , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo Genético , Estudos Prospectivos , Ticagrelor/efeitos adversos
14.
Chin J Traumatol ; 27(1): 27-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37423837

RESUMO

PURPOSE: Dabigatran is usually prescribed in recommended doses without monitoring of the blood coagulation for the prevention of venous thromboembolism after joint arthroplasty. ABCB1 is a key gene in the metabolism of dabigatran etexilate. Its allele variants are likely to play a pivotal role in the occurrence of hemorrhagic complications. METHODS: The prospective study included 127 patients with primary knee osteoarthritis undergoing total knee arthroplasty. Patients with anemia and coagulation disorders, elevated transaminase and creatinine levels as well as already receiving anticoagulant and antiplatelet therapy were excluded from the study. The association of ABCB1 gene polymorphisms rs1128503, rs2032582, rs4148738 with anemia as the outcome of dabigatran therapy was evaluated by single-nucleotide polymorphism analysis with a real-time polymerase chain reaction assay and laboratory blood tests. The beta regression model was used to predict the effect of polymorphisms on the studied laboratory markers. The probability of the type 1 error (p) was less than 0.05 was considered statistically significant. BenjaminiHochberg was used to correct for significance levels in multiple hypothesis tests. All calculations were performed using Rprogramming language v3.6.3. RESULTS: For all polymorphisms there was no association with the level of platelets, protein, creatinine, alanine transaminase, prothrombin, international normalized ratio, activated partial thromboplastin time and fibrinogen. Carriers of rs1128503 (TT) had a significant decrease of hematocrit (p = 0.001), red blood count and hemoglobin (p = 0.015) while receiving dabigatran therapy during the postoperative period compared to the CC, CT. Carriers of rs2032582 (TT) had a significant decrease of hematocrit (p = 0.001), red blood count and hemoglobin (p = 0.006) while receiving dabigatran therapy during the postoperative period compared to the GG, GT phenotypes. These differences were not observed in carriers of rs4148738. CONCLUSION: It might be necessary to reconsider thromboprophylaxis with dabigatran in carriers of rs1128503 (TT) or rs2032582 (TT) polymorphisms in favor of other new oral anticoagulants. The long-term implication of these findings would be the reduction of bleeding complications after total joint arthroplasty.


Assuntos
Anemia , Anticoagulantes , Artroplastia do Joelho , Dabigatrana , Tromboembolia Venosa , Humanos , Anemia/genética , Anemia/prevenção & controle , Anticoagulantes/uso terapêutico , Artroplastia do Joelho/efeitos adversos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Creatinina , Dabigatrana/uso terapêutico , Hemoglobinas , Polimorfismo Genético , Estudos Prospectivos , Tromboembolia Venosa/genética , Tromboembolia Venosa/prevenção & controle
15.
J Biol Chem ; 300(2): 105594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145744

RESUMO

ABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers. The unique feature of ABCB5 is that it exists as both a full transporter (ABCB5FL) and a half transporter (ABCB5ß). Several studies have shown that the ABCB5ß homodimer does not confer multidrug resistance, in contrast to ABCB5FL. In this study, using three complementary techniques, (1) nanoluciferase-based bioluminescence resonance energy transfer, (2) coimmunoprecipitation, and (3) proximity ligation assay, we identified two novel heterodimers in melanoma: ABCB5ß/B6 and ABCB5ß/B9. Both heterodimers could be expressed in High-Five insect cells and ATPase assays revealed that both functional nucleotide-binding domains of homodimers and heterodimers are required for their basal ATPase activity. These results are an important step toward elucidating the functional role of ABCB5ß in melanocytes and melanoma.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Melanoma , Humanos , Adenosina Trifosfatases/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Melanoma/genética , Melanoma/fisiopatologia , Células HEK293
16.
Int J Pharm ; 650: 123708, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135258

RESUMO

Developing an oral formulation for the chemotherapeutic cabazitaxel might improve its patient-friendliness, costs, and potentially exposure profile. Cabazitaxel oral availability is restricted by CYP3A-mediated first-pass metabolism, but can be substantially boosted with the CYP3A inhibitor ritonavir. We here tested whether adding the ABCB1/P-glycoprotein inhibitor elacridar to ritonavir-boosted oral cabazitaxel could further improve its tissue exposure using wild-type, CYP3A4-humanized and Abcb1a/b-/- mice. The plasma AUC0-2h of cabazitaxel was increased 2.3- and 1.9-fold in the ritonavir- and ritonavir-plus-elacridar groups of wild-type, and 10.5- and 8.8-fold in CYP3A4-humanized mice. Elacridar coadministration did not influence cabazitaxel plasma exposure. The brain-to-plasma ratio of cabazitaxel was not increased in the ritonavir group, 7.3-fold in the elacridar group and 13.4-fold in the combined booster group in wild-type mice. This was 0.4-, 4.6- and 3.6-fold in CYP3A4-humanized mice, illustrating that Abcb1 limited cabazitaxel brain exposure also during ritonavir boosting. Ritonavir itself was also a potent substrate for the Abcb1 efflux transporter, limiting its oral availability (3.3-fold) and brain penetration (10.6-fold). Both processes were fully reversed by elacridar. The tissue disposition of ritonavir-boosted oral cabazitaxel could thus be markedly enhanced by elacridar coadministration without affecting the plasma exposure. This approach should be verified in selected patient populations.


Assuntos
Citocromo P-450 CYP3A , Ritonavir , Humanos , Camundongos , Animais , Citocromo P-450 CYP3A/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Distribuição Tecidual , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Camundongos Knockout
17.
Vet Parasitol ; 324: 110069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984155

RESUMO

Although ivermectin (IVM) has a wide spectrum and long half-life, its frequent use as an anthelmintic for the last 42 years led to its worldwide tolerance by Haemonchus contortus. We evaluated the combination of limonene (LIM), a P-glycoprotein (Pgp) modulator, with IVM in lambs infected with a multidrug-resistant H. contortus. Twenty-four male Dorper lambs were artificially infected with two doses (seven days apart) of 8000 infective larvae of a multidrug-resistant isolate of H. contortus. The infection was patent 25 days later. Fifteen days before treatment with IVM (DAY -15), animals were divided into 4 groups: Infected-untreated control (CTL), IVM, LIM, and LIM+IVM. From DAY -15 to DAY + 14, groups LIM and LIM+IVM received 200 mg/kg of body weight/day of LIM via oral. On DAY 0, a single dose of IVM at 200 µg/kg of body weight was administered orally to groups IVM and LIM+IVM. On DAY + 7 and DAY + 14, fecal egg counts (FEC) were performed and on DAY + 14 animals were euthanized for total worm count (TWC), worm length, fecundity of females, and Pgp-9 gene expression. On DAY + 7, group LIM+IVM had 96.29% efficacy based on Fecal Egg Count Reduction TEST (FECRT) and a highly significant reduction in FEC (P = 0.0005) when compared to CTL. On DAY + 14, the efficacy of LIM+IVM was 82.87% on FECRT, although no differences were found among groups for FEC, TWC, worm length, or Pgp-9 gene expression. Female worms from the CTL group had higher egg counts in their uterus when compared to LIM. No differences were found for hematological or biochemical parameters, body weight, or weight gain among groups. Thus, LIM given daily at 200 mg/kg was safe for animals and, when combined with IVM, decreased egg shedding and could reduce pasture contamination, although it was unable to kill multidrug-resistant H. contortus.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Doenças dos Ovinos , Ovinos , Animais , Feminino , Masculino , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Haemonchus/genética , Limoneno/farmacologia , Óvulo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Carneiro Doméstico , Peso Corporal , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Expressão Gênica , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Doenças dos Ovinos/tratamento farmacológico , Fezes , Contagem de Ovos de Parasitas/veterinária
18.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 254-259, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015511

RESUMO

The purpose of this study was to detect the changes of P-Glycoprotein (P-GP) expression in rat brain microvessel endothelial cell line RBE4 after the action of Tetramethylpyrazine (TMP) on Carbamazepine (CBZ), so as to clarify the potential mechanism of TMP combined with CBZ against intractable epilepsy drug resistance. The RBE4 cell line was utilized for in vitro analysis. Cells were divided into control, CBZ, and CBZ-TMP group. The expression of P-GP was assessed using Western blot and reverse transcription polymerase chain reaction (RT-PCR). Intracellular concentration of CBZ was measured through high-performance liquid chromatography (HPLC). The differential expression of mRNA was evaluated by RNA sequencing. The intracellular concentration of CBZ in the CBZ-TMP group was significantly higher than that in other groups. The expression of P-GP in the CBZ group was significantly higher than that in the control group, while in the CBZ&TMP group, it was significantly lower than that in the other groups. Comparative analysis also revealed some differentially expressed genes. Compared with the CBZ group, FAM106A, SLC3A2, TENM2, etc. were upregulated most significantly in the CBZ&TMP group. ZBTB10, WDR7, STARD13, etc. were downregulated most significantly. Results suggest that TMP increases the intracellular concentration of CBZ, downregulates the expression of P-GP increased by CBZ, and modulates related cellular metabolism and signaling pathways, thus reversing the drug resistance mechanism of intractable epilepsy, providing a theoretical basis for the combination of traditional Chinese medicine and antiepileptic drugs.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Animais , Ratos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Células Endoteliais , Carbamazepina/farmacologia , Encéfalo
19.
Sci Rep ; 13(1): 20730, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007504

RESUMO

Adriamycin (ADR) resistance is an obstacle for chemotherapy of breast cancer (BC). ATP binding cassette subfamily B member 1 (ABCB1) expression is indicated to be closely related to the drug resistance of cancer cells. The current work intended to explore the molecular mechanisms to regulate ABCB1 in BC cells with ADR resistance. We found that long noncoding RNA (lncRNA) A1BG antisense RNA 1 (A1BG-AS1) is upregulated in ADR resistant BC cell lines (MCF-7/ADR, MDA-MB-231/ADR). A1BG-AS1 knockdown enhanced the ADR sensitivity by suppressing the viability, proliferation potential and migration ability, and facilitating cell apoptosis in BC. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is known to be an m6A reader to modulate the stability of mRNA transcripts in an m6A-dependent manner, which was a shared RNA binding protein (RBP) for A1BG-AS1 and ABCB1. The interaction of IGF2BP2 with A1BG-AS1 or ABCB1 was explored and verified using RNA pulldown and RNA immunoprecipitation (RIP) assays. ABCB1 mRNA and protein expression was positively regulated by A1BG-AS1 and IGF2BP2 in BC cells. ABCB1 mRNA expression was stabilized by A1BG-AS1 via recruiting IGF2BP2 in an m6A-dependent manner. Moreover, rescue assays demonstrated that A1BG-AS1 enhanced BC ADR resistance by positively modulating ABCB1. Xenograft mouse models were used to explore whether A1BG-AS1 affected the ADR resistance in BC in vivo. The findings indicated that A1BG-AS1 silencing inhibited tumor growth and alleviated ADR resistance in vivo. In conclusion, A1BG-AS1 enhances the ADR resistance of BC by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Feminino , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , MicroRNAs/genética , RNA Mensageiro/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Imunoglobulinas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
20.
Drug Resist Updat ; 71: 101009, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797431

RESUMO

Human P-glycoprotein (P-gp) or ABCB1 is overexpressed in many cancers and has been implicated in altering the bioavailability of chemotherapeutic drugs due to their efflux, resulting in the development of chemoresistance. To elucidate the mechanistic aspects and structure-function relationships of P-gp, we previously utilized a tyrosine (Y)-enriched P-gp mutant (15Y) and demonstrated that at least 15 conserved residues in the drug-binding pocket of P-gp are responsible for optimal substrate interaction and transport. To further understand the role of these 15 residues, two new mutants were generated, namely 6Y with the substitution of six residues (F72, F303, I306, F314, F336 and L339) with Y in transmembrane domain (TMD) 1 and 9Y with nine substitutions (F732, F759, F770, F938, F942, M949, L975, F983 and F994) in TMD2. Although both the mutants were expressed at normal levels at the cell surface, the 6Y mutant failed to transport all the tested substrates except Bodipy-verapamil, whereas the 9Y mutant effluxed all tested substrates in a manner very similar to that of the wild-type protein. Further mutational analysis revealed that two second-site mutations, one in intracellular helix (ICH) 4 (F916Y) and one in the Q loop of nucleotide-binding domain (NBD) 1 (F480Y) restored the transport function of 6Y. Additional biochemical data and comparative molecular dynamics simulations of the 6Y and 6Y+F916Y mutant indicate that the Q-loop of NBD1 of P-gp communicates with the substrate-binding sites in the transmembrane region through ICH4. This is the first evidence for the existence of second-site suppressors in human P-gp that allow recovery of the loss of transport function caused by primary mutations. Further study of such mutations could facilitate mapping of the communication pathway between the substrate-binding pocket and the NBDs of P-gp and possibly other ABC drug transporters.


Assuntos
Neoplasias , Supressão Genética , Humanos , Mutação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...